Для вычисления определённых интегралов, не сводимых к табличным, можно использовать численное интегрирование. Интеграл может быть кратным: двойным, тройным и выше. Точность и длительность вычисления зависит от дискретности аргументов подынтегральной функции. Чем выше дискретность, тем точнее решение и дольше процесс вычисления. Для любого интеграла существует граница сходимости, то есть, значение дискретности, увеличение которой не приводит к заметному увеличению точности вычислений. Приведены примеры численного интегрирования в гравитационных задачах. Получено точное аналитическое и методом численного интегрирования подтверждение применимости к однородным шарам закона Всемирного тяготения Ньютона в классической формулировке. Numerical integration. Can be used numerical integration to calculate definite integrals that are not reducible to tabular integrals. The integral can be multiple: double, triple and higher. The accuracy and duration of the calculation depends on the discreteness of the arguments of the integrand. Is the higher the discreteness, the more accurate the solution and the longer the calculation process. For any integral, there is a convergence border, that is, a value of discrete, an increase in which does not lead to a noticeable increase in the accuracy of calculations. Examples of numerical integration in gravitational problems are given. Is obtained an exact the confirmation of analytical and numerical integration method to the applicability to homogeneous balls of Newton's law of universal gravitation in the classical formulation. |
Новые книги авторов СИ, вышедшие из печати:
О.Болдырева "Крадуш. Чужие души"
М.Николаев "Вторжение на Землю"